Turning Escherichia coli into a Frataxin-Dependent Organism

نویسندگان

  • Béatrice Roche
  • Rym Agrebi
  • Allison Huguenot
  • Sandrine Ollagnier de Choudens
  • Frédéric Barras
  • Béatrice Py
  • Josep Casadesús
چکیده

Fe-S bound proteins are ubiquitous and contribute to most basic cellular processes. A defect in the ISC components catalyzing Fe-S cluster biogenesis leads to drastic phenotypes in both eukaryotes and prokaryotes. In this context, the Frataxin protein (FXN) stands out as an exception. In eukaryotes, a defect in FXN results in severe defects in Fe-S cluster biogenesis, and in humans, this is associated with Friedreich's ataxia, a neurodegenerative disease. In contrast, prokaryotes deficient in the FXN homolog CyaY are fully viable, despite the clear involvement of CyaY in ISC-catalyzed Fe-S cluster formation. The molecular basis of the differing importance in the contribution of FXN remains enigmatic. Here, we have demonstrated that a single mutation in the scaffold protein IscU rendered E. coli viability strictly dependent upon a functional CyaY. Remarkably, this mutation changed an Ile residue, conserved in prokaryotes at position 108, into a Met residue, conserved in eukaryotes. We found that in the double mutant IscUIM ΔcyaY, the ISC pathway was completely abolished, becoming equivalent to the ΔiscU deletion strain and recapitulating the drastic phenotype caused by FXN deletion in eukaryotes. Biochemical analyses of the "eukaryotic-like" IscUIM scaffold revealed that it exhibited a reduced capacity to form Fe-S clusters. Finally, bioinformatic studies of prokaryotic IscU proteins allowed us to trace back the source of FXN-dependency as it occurs in present-day eukaryotes. We propose an evolutionary scenario in which the current mitochondrial Isu proteins originated from the IscUIM version present in the ancestor of the Rickettsiae. Subsequent acquisition of SUF, the second Fe-S cluster biogenesis system, in bacteria, was accompanied by diminished contribution of CyaY in prokaryotic Fe-S cluster biogenesis, and increased tolerance to change in the amino acid present at the 108th position of the scaffold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Turning Saccharomyces cerevisiae into a Frataxin-Independent Organism

Frataxin (Yfh1 in yeast) is a conserved protein and deficiency leads to the neurodegenerative disease Friedreich's ataxia. Frataxin is a critical protein for Fe-S cluster assembly in mitochondria, interacting with other components of the Fe-S cluster machinery, including cysteine desulfurase Nfs1, Isd11 and the Isu1 scaffold protein. Yeast Isu1 with the methionine to isoleucine substitution (M1...

متن کامل

The molecular basis of iron-induced oligomerization of frataxin and the role of the ferroxidation reaction in oligomerization.

The role of the mitochondrial protein frataxin in iron storage and detoxification, iron delivery to iron-sulfur cluster biosynthesis, heme biosynthesis, and aconitase repair has been extensively studied during the last decade. However, still no general consensus exists on the details of the mechanism of frataxin function and oligomerization. Here, using small-angle x-ray scattering and x-ray cr...

متن کامل

Crystal structure of Escherichia coli CyaY protein reveals a previously unidentified fold for the evolutionarily conserved frataxin family.

Friedreich ataxia is an autosomal recessive neurodegenerative disease caused by defects in the FRDA gene, which encodes a mitochondrial protein called frataxin. Frataxin is evolutionarily conserved, with homologs identified in mammals, worms, yeast, and bacteria. The CyaY proteins of gamma-purple bacteria are believed to be closely related to the ancestor of frataxin. In this study, we have det...

متن کامل

Crystallization and preliminary X-ray crystallographic analysis of Escherichia coli CyaY, a structural homologue of human frataxin.

CyaY is a 106-residue protein from Escherichia coli. It shows amino-acid sequence similarity to human frataxin and a frataxin homologue in Saccharomyces cerevisiae, Yfh1p. The former is associated with the disease Friedreich ataxia and the latter plays a key role in iron homeostasis in mitochondria. CyaY has been overexpressed in soluble form in E. coli. The recombinant protein with a His(6) ta...

متن کامل

Cloning and evaluation of gene expression and purification of gene encoding recombinant protein containing binding subunit of coli surface antigens CS1 and CS2 from Enterotoxigenic Escherichia coli

Background & Objective: Enterotoxigenic Escherichia coli (ETEC) is a major causative agent of diarrhea. Enterotoxins and the colonization factors (CFs) are major virulence factors in ETEC infections. The bacterium binds to the intestinal epithelial cell surface through colonization factors and produces enterotoxins that cause excessive fluid and electrolyte secretion in the lumen of the intesti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015